The PAV algorithm optimizes binary proper scoring rules

نویسندگان

  • Niko Brümmer
  • Johan A. du Preez
چکیده

There has been much recent interest in application of the pool-adjacent-violators (PAV) algorithm for the purpose of calibrating the probabilistic outputs of automatic pattern recognition and machine learning algorithms. Special cost functions, known as proper scoring rules form natural objective functions to judge the goodness of such calibration. We show that for binary pattern classifiers, the non-parametric optimization of calibration, subject to a monotonicity constraint, can solved by PAV and that this solution is optimal for all regular binary proper scoring rules. This extends previous results which were limited to convex binary proper scoring rules. We further show that this result holds not only for calibration of probabilities, but also for calibration of log-likelihood-ratios, in which case optimality holds independently of the prior probabilities of the pattern classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss Functions for Binary Class Probability Estimation and Classification: Structure and Applications

What are the natural loss functions or fitting criteria for binary class probability estimation? This question has a simple answer: so-called “proper scoring rules”, that is, functions that score probability estimates in view of data in a Fisher-consistent manner. Proper scoring rules comprise most loss functions currently in use: log-loss, squared error loss, boosting loss, and as limiting cas...

متن کامل

Strictly Proper Scoring Rules, Prediction, and Estimation

Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical score based on the forecast and on the event or value that materializes. A scoring rule is strictly proper if the forecaster maximizes the expected score for an observation drawn from the distribution F if she issues the probabilistic forecast F , rather than any G 6= F . In prediction problems, strictly prope...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

Choosing a Strictly Proper Scoring Rule

S proper scoring rules, including the Brier score and the logarithmic score, are standard metrics by which probability forecasters are assessed and compared. Researchers often find that one’s choice of strictly proper scoring rule has minimal impact on one’s conclusions, but this conclusion is typically drawn from a small set of popular rules. In the context of forecasting world events, we use ...

متن کامل

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.2331  شماره 

صفحات  -

تاریخ انتشار 2013